Designing Punjabi Poetry Classifiers Using Machine Learning and Different Textual Features
نویسندگان
چکیده
منابع مشابه
Dutch football prediction using machine learning classifiers
Sports betting is becoming more popular every year and more people are betting now than ever. With the growth of the betting market comes the growth of research done on match prediction. Research done in the 1950s has been the basis for match predictions up until the 1980s. Since then prediction techniques have shifted from distribution prediction towards a more modern data mining predicting. U...
متن کاملDesigning social choice mechanisms using machine learning
Social choice studies ordinal preference and information aggregation with applications in high-stakes political elections as well as low-stakes movie rating websites. Recently, computational aspects of classical social choice mechanisms have been extensively investigated, yet not much has been done in designing new mechanisms with the help of computational techniques. In this paper, we outline ...
متن کاملRecognizing Textual Entailment using Dependency Analysis and Machine Learning
This paper presents a machine learning system that uses dependency-based features and lexical features for recognizing textual entailment. The proposed system evaluates the feature values automatically. The performance of the proposed system is evaluated by conducting experiments on RTE1, RTE2 and RTE3 datasets. Further, a comparative study of the current system with other ML-based systems for ...
متن کاملTextual Entailment Features for Machine Translation Evaluation
We present two regression models for the prediction of pairwise preference judgments among MT hypotheses. Both models are based on feature sets that are motivated by textual entailment and incorporate lexical similarity as well as local syntactic features and specific semantic phenomena. One model predicts absolute scores; the other one direct pairwise judgments. We find that both models are co...
متن کاملMachine Translation Evaluation with Textual Entailment Features
We present two regression models for the prediction of pairwise preference judgments among MT hypotheses. Both models are based on feature sets that are motivated by textual entailment and incorporate lexical similarity as well as local syntactic features and specific semantic phenomena. One model predicts absolute scores; the other one direct pairwise judgments. We find that both models are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Arab Journal of Information Technology
سال: 2019
ISSN: 2309-4524,1683-3198
DOI: 10.34028/iajit/17/1/5